
Model Checking of UML Class Diagrams

including OCL using Relational Logic

Patrick Vogt and Lars-Erik Kimmel

Hochschule RheinMain - University of Applied Sciences Wiesbaden, Germany
{patrick.b.vogt|lars-erik.b.kimmel}@student.hs-rm.de,

WWW home page: http://www.cs.hs-rm.de/~{pvogt002|lkimm002}

Abstract. The popular process models for object-oriented software de-
velopment do not comprise model checking techniques. Model checking
tools which take UML class diagrams including OCL as input could fa-
cilitate the incorporation of model checking techniques into everyday
software engineering workflows.
This paper describes a two-step model checking approach for UML class
diagrams including OCL: the class diagrams are first transformed into
relational logic. The actual model checking is then performed by existing
model checking tools.

1 Introduction

Formal methods and, in particular, model checking technologies are almost ex-
clusively applied during the development of safety critical software systems. They
are mainly omitted in the everyday software engineering process [BA08, Som10].

There are a few special tools [GBR07, CCR08, ABGR] for formal reasoning
in the context of UML class diagrams [Obj11] and OCL expressions [Obj10], and
several established non-object-oriented model checking tools like [Jac02, Hol97].

Manual transformation of UML class diagrams into existing non-object-orien-
ted model checking languages is possible, but often inefficient. The objective of
this paper is to present an approach which enables the average object-oriented
software developer to efficiently perform model checking on UML class diagrams.

Section 2 briefly describes existing tools which can be directly applied to
UML class diagrams. Section 3 explains a strategy for automatic transformation
of UML class diagrams into relational logic. The authors of this paper have
developed two model checking tools according to this strategy. The final section
summarizes the current status of these development efforts.

2 Related Work

Three of the existing UML model checking approaches are directly related to
the work in this paper: USE [GBR07], UML2Alloy [ABGR] and FMC [HW12].

USE is a language and an environment for the specification of UML class
diagrams with OCL and for the checking of UML object diagrams (snapshots)

mailto:patrick.b.vogt@student.hs-rm.de
mailto:lars-erik.b.kimmel@student.hs-rm.de
http://www.cs.hs-rm.de/
http://www.cs.hs-rm.de/~pvogt002
http://www.cs.hs-rm.de/~lkimm002


II

against a given specification. Both class and object diagrams have to be manually
provided as text data. It is not possible to automatically generate valid instances
of a model that fulfill every specified constraint and to iterate over those instances
similar to the Alloy Analyzer or Constraint Programming. Furthermore it is
not possible to force USE to show counterexamples with respect to a given
specification.

UML2Alloy transforms an UML class diagram including a subset of OCL into
an Alloy model. The class diagram has to be provided in the form of an XMI file.
The tool also provides an external view for showing valid instances for the UML
class diagrams as object diagrams [Anab]. Unfortunately the reference manual of
UML2Alloy suggests that the produced class diagrams should be specified with
one specific outdated version of ArgoUML [Anaa]. UML2Alloy is still in beta
state.

[HW12] follow an approach similar to this paper. They transform a class
diagram including OCL into the CPL based language Formula. Constraint logic
is used for finding valid instances of the class diagram resp. counterexamples for
a given assumption.

3 Basic Concepts

This paper’s strategy for automatic transformation of class diagrams into rela-
tional logic is mainly based on [BCG05]. The rules have been slightly adapted
for relational logic:

– A class Class1 and its instances c0, c1, . . . are transformed into a unary
relation, e.g.

Class1 = {(c0), (c1), . . .}, . . .
– For every binary association asso between Class1 and Class2 the following

relational formulae must be valid:
• type assertion: ∀c1, c2. ((c1, c2) ∈ asso) → (c1 ∈ Class1)∧ (c2 ∈ Class2)
• multiplicity: ∀c1. (c1 ∈ Class1) →

(lowerBound ≤ #{c2 | (c1, c2) ∈ association} ≤ upperBound)
– A class attribute is modeled simply like a binary association but with fixed

bounds of 1 for its upper and lower bound
– An abstract classAbstractClass and a corresponding generalization of classes

ConcreteClass1 and ConcreteClass2 are transformed into the following ex-
pression: ∀c. (c ∈ AbstractClass) →

(c ∈ ConcreteClass1) xor (c ∈ ConcreteClass2)

These transformations present only a subset of the UML specification for
UML class diagrams. In addition there are still more transformations e.g. for
n-ary associations and association classes.

There are two approaches for the processing of OCL constraints in this con-
text: On the one hand it is possible to transform (a subset of) OCL as well into
relational logic and transform the OCL constraints into constraints within the
relational model. On the other hand a hybrid approach can be used: A model



III

checking backend for relational logic such as KodKod [Tor09] creates several
iterable instances. The OCL constraints are checked afterwards by another tool.

The transformation of OCL pre- and postcondition into relational logic re-
quires the concept of linear time. Therefore the relational model is augmented
by a unary relation T ime with corresponding linear ordering constraints. Every
relation of the non-temporal model has to be extended to incorporate a T ime-
value, e.g. an operation setValue(v: String) which is called on the object x0

in time t1 and replaces the old value v0 of the attribute value with the new
value v1 could therefore be modeled by the following relations:

T ime = {(t0), (t1), (t2), . . .}, value = {(x0, v0, t1), (x0, v1, t2}
There are two versions of this approach: Time Axis and Global State. Both are
further described in [Jac12], e.g.:

In addition, it is necessary to model the concept of object creation and de-
struction. This is achieved by introducing a relation isAlive which represents
the lifetime of an object. If and only if an element of the unary relation T ime is
related with this object, the object is alive at this point in time.

There are several transformations of OCL constraints into relational logic
which have to bridge semantic discrepancies. Challenging yet feasible is e.g. the
transformation of OCL expressions which operate on bags, such as sum(). This
can be solved as follows: The elements of a collection E = {e0, e1, . . .} must
be combined with an ordered index set I = {(i1, i2), (i2, i3), (i3, i4) . . .}. The
last column of the relation E × I × Integer is then constrained to contain the
temporary sum while adding all the elements of E and iterating over the index
set I with the defined sequence in I. With this pattern the result of the sum()

operation is then given as Integer-value of the last tuple of E × I × Integer.

4 Conclusion

The potential field of application of UML model checking tools ranges from
teaching of UML/OCL in software engineering classes to the incorporation of
model checking techniques into everyday object-oriented software development.

We have developed two model checking tools based on the approach pre-
sented in this paper. The tools are available for download at the authors’ home
pages. The current scope comprises the most frequent concepts of class dia-
grams (associations, attributes, inheritance) and the basic concepts of pre- and
post-conditions. Alloy, KodKod and USE are used as model checking backends.

Further development will focus on symmetry filtering and on the more chal-
lenging transformations, e.g.: Arithmetic operations cannot be formulated effi-
ciently in relational logic. This is the domain of CP-based tools. Some of the
OCL aggregate functions are based on the concept of a bag, which directly con-
tradicts the set-based concept of relations. The transformation of a simple bag
therefore involves several relations. In OCL operations can be combined by, pos-
sibly recursive, method calls. This kind of nesting is not directly supported in
Alloy.



IV

References

[ABGR] Anastasakis, Kyriakos ; Bordbar, Behzad ; Georg, Geri ; Ray,
Indrakshi: UML2Alloy: A Challenging Model Transformation.
http://dx.doi.org/10.1007/978-3-540-75209-7_30. In: Engels, Gregor ;
Opdyke, Bill ; Schmidt, Douglas ; Weil, Frank : Model Driven Engineering

Languages and Systems Bd. 4735. Springer Berlin / Heidelberg. – ISBN
978–3–540–75208–0, 436-450

[Anaa] Anastasakis, Kyriakos : UML2Alloy - Reference Manual.
http://www.cs.bham.ac.uk/~bxb/UML2Alloy/files/uml2alloy_manual.pdf,
Last checked: 30. January. 2012

[Anab] Anastasakis, Kyriakos : UML2Alloy - webpage.
http://www.cs.bham.ac.uk/~bxb/UML2Alloy/index.php, Last checked:
30. January. 2012

[BA08] Ben-Ari, Mordechai: Principles of the Spin Model Checker. Springer, 2008.
– ISBN 978–1–84628–769–5

[BCG05] Berardi, Daniela ; Calvanese, Diego ; Giacomo, Giuseppe D.: Rea-
soning on UML class diagrams. In: Artificial Intelligence 168 (2005), Nr.
1–2, 70 - 118. http://dx.doi.org/10.1016/j.artint.2005.05.003 . – DOI
10.1016/j.artint.2005.05.003. – ISSN 0004–3702

[CCR08] Cabot, J. ; Clariso, R. ; Riera, D.: Verification of UML/OCL Class Dia-
grams using Constraint Programming. In: Software Testing Verification and

Validation Workshop, 2008. ICSTW ’08. IEEE International Conference on,
2008, S. 73 –80

[GBR07] Gogolla, Martin ; Büttner, Fabian ; Richters, Mark: USE: A UML-
Based Specification Environment for Validating UML and OCL. In: Science
of Computer Programming 69 (2007), S. 27–34

[Hol97] Holzmann, G.J.: The model checker SPIN. In: Software Engi-

neering, IEEE Transactions on 23 (1997), may, Nr. 5, S. 279 –295.
http://dx.doi.org/10.1109/32.588521. – DOI 10.1109/32.588521. – ISSN
0098–5589

[HW12] Horn, Julian ; Wenz, Carl-Phillip: Model Checking of UML Class Diagrams

with OCL using CPL. http://www.cpwenz.de/FMC. Version: 2012
[Jac02] Jackson, Daniel: Alloy: a lightweight object modelling notation.

In: ACM Trans. Softw. Eng. Methodol. 11 (2002), April, 256–290.
http://dx.doi.org/http://doi.acm.org/10.1145/505145.505149 . – DOI
http://doi.acm.org/10.1145/505145.505149. – ISSN 1049–331X

[Jac12] Jackson, Daniel: Software Abstractions: Logic, Language, and Analysis. Re-
vised. The MIT Press, 2012. – ISBN 978–0262017152

[Obj10] Object Management Group: Object Constraint Language - Version 2.3.
http://www.omg.org/spec/OCL/2.3.1/. Version: 2010

[Obj11] Object Management Group: Unified Modeling Language.
http://www.omg.org/spec/UML/. Version: 2011

[Som10] Sommerville, Ian: Software Engineering. 9th. Addison Wesley, 2010. – ISBN
978–0137035151

[Tor09] Torlak, Emina : A Constraint Solver for Software Engineering: Find-

ing Models and Cores of Large Relational Specifications. Version: 2009.
http://people.csail.mit.edu/emina/pubs/kodkod.phd.pdf, Last checked:
03. February. 2012

http://dx.doi.org/10.1007/978-3-540-75209-7_30
http://www.cs.bham.ac.uk/~bxb/UML2Alloy/files/uml2alloy_manual.pdf
http://www.cs.bham.ac.uk/~bxb/UML2Alloy/index.php
http://dx.doi.org/10.1016/j.artint.2005.05.003
http://dx.doi.org/10.1109/32.588521
http://www.cpwenz.de/FMC
http://dx.doi.org/http://doi.acm.org/10.1145/505145.505149
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/UML/
http://people.csail.mit.edu/emina/pubs/kodkod.phd.pdf

	Model Checking of UML Class Diagrams including OCL using Relational Logic

